

An Introduction to
Function Point Analysis

This appendix provides more information about function point analysis. Keep in mind
that even this discussion will provide you with only a basic understanding. Although
function point analysis is not difficult, the rules for counting function points can be
complex for the novice. Resources, such as books, Web sites, training, and certifica-
tion, are widely available if you are interested in learning more.

BACKGROUND

Lines of code (LOG) or source lines of code (SLOC) have been the traditional way of
estimating the size of an application. Although intuitively appealing, estimating or
counting lines of code have several disadvantages. First, many organizations develop
applications using different programming languages, platforms, tools, and so on. An
IT project developed in Visual Basic and SQL Server will be difficult to compare to a
mainframe-based COBOL application. Moreover, experienced and talented pro-
grammers tend to write more efficient code than novice programmers. As a result,
experienced programmers may write fewer lines of code than novices and still accom-
plish the same thing. In addition, no set standard exists for determining what exactly
should be counted. For example, should remarks or documentation lines be counted?
What about the initialization of variables? Although counting lines of code seems
fairly straightforward, the actual implementation becomes problematic.

To overcome many of the inherent problems with counting LOG, Allan Albrecht
proposed the idea of function points at a conference sponsored by IBM in 1979. The
basic concept behind function points is to focus on the functionality of the application.
After all, the size and complexity of an application (and subsequently the number of
lines of code to be written) are based upon what the application must do. Function
points provide a synthetic metric, similar to hours, kilos, and degrees Celsius, for
software engineering that gives consistent results, regardless of the technology or
programming language used.

In the early 1980s, statistical analysis provided the means for refining the function
point technique. Since 1986, function point analysis rules and guidelines have been
overseen by a nonprofit organization called the International Function Point Users
Group (IFPUG). The IFPUG maintains the Counting Practices Manual that contains
all the current guidelines and certification for counting function points under the IFPUG
standard. The material in this appendix will be based upon the latest counting practices
by IFPUG.

You should know, however, that there is an alternative way of counting function
points. In 1983, Charles Symons, working for Nolan, Norton, and Company (later
acquired by KPMG Consulting) critiqued Albrecht's proposed function point technique
and argued the existence of several flaws. As a result, Symons proposed an alternative

299

300 APPENDIX A / AN INTRODUCTION TO FUNCTION POINT ANALYSIS

function point technique called the Mark II approach. The Mark II technique has
become popular primarily in the United Kingdom and is overseen by the United
Kingdom Function Point Users Group (UFPUG).

WHAT PRECISELY IS A FUNCTION POINT?

Function point analysis is a structured technique for breaking up or modularizing an
application by categories or classes based on functionality. A function point is a soft-
ware metric. Similar to the many metrics you use each day, a function point provides an
idea of the size and complexity of a particular application or module of that appli-
cation. For example, it should be pretty straightforward that a 4,000-square-foot home
is larger than a 2,000-square-foot home. But will a 4,000-square-foot house take twice as
long and cost twice as much as a 2,000-square-foot house? It depends. What if the
larger house uses stock material and includes only the basic amenities while the
2,000-square-foot house has many custom features? The custom features may include a
handcrafted staircase, exotic wood, imported marble, and other very expensive
items. As you can see, depending on the features or requirements of each house, the
time to build and the cost for each house can differ radically (Dekker 1999).

Similarly, an application that has 4,000 LOG has twice as many lines of code as a
2,000 LOG application. But will a 4,000 LOG application take twice as long and cost
twice as much to build as a 2,000 LOG application? Again, the answer is that it
depends. In this case, it depends more on the features or required functionality of the
system and the complexity of those required features. Function points provide a useful
metric that combines both functionality and complexity. For example, a 4,000 function
point application will, in fact, be larger, have more functionality, and be more complex
than a 2,000 function point application. Since function points are independent of the
technology, we can compare these two applications regardless of the fact that one
application is written in Java and the other in COBOL. More specifically, the size of the
application is based upon functionality in terms of:

• Inputs

• Outputs

• Inquiries

• Internal files

• External files

• The complexity of the general characteristics of the system

Therefore, the key to function point analysis is having a good understanding of
the system's requirements. Often at the outset of a project, the requirements may not be
clear. A function point analysis can still be conducted and then updated throughout the
project life cycle as these requirements become more clearly defined. For example, a
function point analysis can be conducted based upon the definition of the project's
scope. This analysis will provide a solid definition of the application's boundary and will
provide a starting point for defining and subsequently estimated the size and
complexity of the application deliverable. A clearer picture of the features and func-
tionality of the application will follow during the analysis and design phases of the
project. Later on, a function point analysis can be conducted when the project appli-
cation is delivered, in order to compare the agreed upon requirements to what was
delivered. In general, function points can be useful for:

HOW TO CONDUCT A FUNCTION POINT ANALYSIS 301

• Managing Scope—Scope changes will change an application's total func
tion point count. As a result, the project manager and project sponsor/client
use function point analysis to determine the impact of a proposed scope
change in terms of the project's schedule and budget.

• Benchmarking—The value of function point analysis is that data can be col
lected and compared to other projects. For example, the true value of
counting function points is to compare a project to past projects and to
other projects throughout the organization. This comparison allows an
organization to identify challenges and opportunities in order to take cor
rective action when necessary. In addition, estimation becomes more mean
ingful and accurate when similar methods, tools, and resources are part of
the data analysis. An organization can inventory its application portfolio to
understand cost structures and the impact of new best practices. Function
points by themselves do not provide much information without the use of
other metrics, such as time, cost, and quality.

• Reliability—Once knowledgeable and experienced in function point count
ing, different people can count function points for the same application and
obtain the same measure within an acceptable margin of error.

HOW TO CONDUCT A FUNCTION POINT ANALYSIS

The process of conducting a function point analysis can be summarized in seven steps:

• Determine the function type count to be conducted.

• Define the boundary of the application.

• Define all data functions and their degree of complexity.

• Define all transactional functions and their complexity.

• Calculate the Unadjusted Function Point Count.
• Calculate the Value Adjustment Factor based on a set of General System

Characteristics.

• Calculate the final Adjusted Function Point Count.

Step 1: Determine the Function Type Count to Be Conducted

The first step in conducting a function point analysis is to determine the type of function
count to be conducted. Function points can be counted by an individual or a small team,
and the type of function point count will help the counters plan their strategy and
determine what documents and resources will be required. A function type count can be
one of three types:

• Development—A development function type count would be made for a
new project. These types of counts would be based initially on the scope
definition of the project and would be updated throughout the project life
cycle as requirements and functionality are more clearly defined. The basic
purpose of development function type counts is estimating the size and
effort of the application.

• Enhancement—Enhancement focuses more on maintenance projects, or
projects that attempt to modify or enhance existing applications. These

302 APPENDIX A / AN INTRODUCTION TO FUNCTION POINT ANALYSIS

projects may include deleting, changing, or adding functionality to the
existing application.

• Application—An application function type count may be viewed as an
inventorying of an existing application in the IT project portfolio in order to
create a baseline or benchmark. Combined with other metrics, a database can
be created to support analysis and estimation.

Step 2: Define the Boundary of the Application

The application boundary defines the border for the user, the application itself, and
any other external application. The boundary should be based upon the user's view of
the domain and not technology partitions or platforms. Often applications today must
interface or integrate with each other, so it is important that the boundary be defined
clearly. Scope management is concerned with defining, managing, and controlling the
project's scope. More specifically, tools such as data flow diagrams and use case dia-
grams are useful for defining the project's scope and the boundary for the application.

Step 3: Define All Data Functions and Their Degree of Complexity

Data function types may be thought of as data at rest; they are the logical data that can
be updated and queried. The transactional functions, such as external inputs (El),
external outputs (EO), and external inquiries (EQ), are processes that set the data in
motion. These processes act directly on the logical data to perform the updates and
queries. In particular, data functions can be either internal logical files (ILF) or external
interface files (EIF). As their names imply, ILFs are maintained within the application
boundary and EIFs are maintained by an external application but available to the
application being counted. For example, a sales application might keep track of
customers and the products they purchase, but customer balances and other
credit-related information may be maintained by a separate accounts receivable
application.

Once the ILFs and EIFs are identified and counted, they are scored or rated based
on their functional complexity in terms of their number of record type elements
(RETs) and data element types (DETs). A record type element, or RET, is a recogniz-
able subgroup of data elements contained within the ILF or EIF. These are one of the
more difficult concepts in function point analysis, but you can think of them as rep-
resenting a parent-child relationship. In object-oriented terms, you can think of this as
a subclass and a superclass. On the other hand, a data element type, or DET, is defined as
a unique, non-recursive field recognized by the user. For example, let's say that an
entity called student has a student identification number, name, address, and a cumu-
lative number of credit hours. In addition, there are two types of students—undergrad-
uate and graduate. If the data about students were stored, updated, retrieved, and
queried by our application, we would count this as 1 ILF with 6 DETs and 2 RETs as
illustrated in Table A. 1.

Once the ILFs and EIFs and their associated RETs and DETs have been identified
and counted, their complexity can be determined using the matrix shown in Table A.2.
For example, the Student ILF would have a complexity score of Low because the
number of RETs is less than 2 and the number of DETs is between 1 and 19.

Step 4: Define all Transactional Functions and Their Complexity

Transactional functional types focus on the processing of data between the user and
the application and between the application and any external applications. Therefore,

HOW TO CONDUCT A FUNCTION POINT ANALYSIS 303

transactional functions, called external inputs (Els), external outputs (EOs), and exter-
nal inquiries, (EQs) perform updates, retrievals, and queries on the data contained
within the ILFs and ElFs.
An external input (El) is defined as an elementary process that processes data or control
information that originates from outside the application boundary. An elementary
process is defined as the smallest unit of activity that is meaningful to the user. The
elementary process must be viewed from the user's perspective (i.e., not a technical per-
spective) and must leave the application in a consistent state after performing its func-
tion. Data refers to the actual data processed by the transaction, while control
information refers to such things as rules or parameters passed to application. An exam-
ple of an El would be an input screen to add new students to the student ILF. The

elementary process would require that all required fields be filled before
adding the new student's information to the student ILF in order to leave the
application in a consistent state.

Once the Els have been identified and counted, their complexity can be
determined using the following matrix based on the file types referenced
(FTR) and data element types. An FTR is just the number of ILF and EIF files
referenced. For example, if an input screen to add new students only accessed
the student ILF and included only 6 DETs, the complexity rating for this
particular El would be Low. See Table A.3.
Similarly, an external output (EO) is an elementary process that allows
data or control information to exit the application boundary. Examples of
EOs would include reports, receipts, confirmation messages, derived or
calculated totals, and graphs or charts. Once the EOs are identified and
counted, their relative functional complexity can be determined

based on the FTRs and DETs. Continuing
with our example, suppose that the student
application printed two reports, one report
listing all the students alphabetically and the
other grouping by graduate and undergraduate.
If all data fields were included in each report,
the complexity rating for the applica-

tion's EOs would be Low See Table A.4.

An external inquiry (EQ) is defined as an
elementary process that includes both a
combination of inputs and outputs for
retrieving data from one or more ILFs and/or
EIFs. Unlike an El, the EQ input process does
not update any internal or external files, and the
output of the EQ transaction does not calculate or
derive any data. Once the EQs have been
identified and counted, a relative complexity
score can be made. For example, let's suppose
our student application allows searching by
student number. This query would count as one
EQ. In addition, let's suppose that an error
message is displayed if no matching student
numbers are found. The number of DETs would
include the 6 data fields plus an additional
DET for the error

304 APPENDIX A / AN INTRODUCTION TO FUNCTION POINT ANALYSIS

message. Therefore, the complexity rating for the application's EQ would be Low.
See Table A.5.

Step 5: Calculate the Unadjusted Function Point Count

Using the counts for each ILF, EIF, El, EO, and EQ, an Unadjusted Function Point
count can be computed using Table A.6.

To find the Total Unadjusted Function Point Total (UAF), multiply the number of
low, average, and high ILFs, EIFs, Els, EOs, and EQs by the appropriate number in
each cell. These values are then summed across the rows for each function type. The
grand total is just a summation of these row totals.

Step 6: Calculate the VAF Based on a Set of General System Characteristics

The Value Adjustment Factor (VAF) is multiplied by the Unadjusted Function Point
(UAF) calculated in step 5 to come up with a Final Adjusted Function Point total. In
identifying each ILF, EIF, EO, El, and EQ, a complexity matrix was used to determine
the complexity for each data and transactional function type in terms of low, average,
or high complexity. However, at this time a set of fourteen General System
Characteristics (GSC) are used to compute a Total Degree of Influence. This degree of
influence will be used to compute the VAF.

To determine the Total Degree of Influence, each GSC is rated based on its degree
of influence using the following 0 to 5 scale:

0. Not present or no influence

1. Incidental influence

2. Moderate influence

3. Average influence

4. Significant influence

5. Strong influence throughout

Table A.5 Complexity for External Inquiries (EQ)

Total Unadjusted Function Points (UAF)

HOW TO CONDUCT A FUNCTION POINT ANALYSIS 305

Following is information about each GSC that can be used to rate it.

1. Data Communications—A communication facility is required to send
data and control information via teleprocessing (TP). These links require
protocols that allow for the exchange of data between a sender and receiver.
Examples include TCP/IP, Ethernet, AppleTalk, etc.

Degree of Influence

0. Pure batch or stand-alone PC

1. Batch but with remote data entry or printing

2. Batch but with remote data entry and remote printing

3. Online data collection or TP on the front end to a batch processing or
query system

4. More than a front end, but only one type of TP protocol supported

5. More than a front end with more than one type of TP protocol sup
ported

2. Distributed Data Processing—Distributed data processing is a character
istic of the application.

Degree of Influence

0. Does not aid the transfer of data or processing function between com
ponents of the system

1. Prepares data for end user processing or another component of the sys
tem (e.g., spreadsheet, DBMS, etc.)

2. Data prepared for transfer, then transferred and processed by another
component

3. Distributed processing and data transfer are online but only in one
direction

4. Distributed processing and data transfer are online and in both direc
tions

5. Processing of functions is dynamic and performed by the most appro
priate component of the system

3. Performance—Performance in terms of response time or throughput. It
will greatly influence the design, development, implementation, support,
and maintenance of the application.

Degree of Influence

0. No special performance requirements stated

1. Performance and design requirements stated and reviewed, but no spe
cial attention needed

2. Response time or throughput critical at peak times. No special design
required and processing deadline is the next business day

3. Response time and throughput are critical during all business hours.
Although no special design for CPU utilization is required, the process
ing deadline requirements with interfacing systems pose constraints

4. Stated user performance requirements are stringent and require a per
formance analysis in the design phase

5. Performance analysis tools needed in the design, development, and/or
implementation phases to meet stated user performance requirements

306 APPENDIX A / AN INTRODUCTION TO FUNCTION POINT ANALYSIS

4. Heavily Used Configuration—The volume of data and transactions
placed on a particular hardware platform.

Degree of Influence

0. No operational restrictions
1. Operational restrictions exist, but are not overly restrictive and no spe

cial attention is needed
2. Some security and timing considerations are needed
3. Specific processor requirements for a specific component of the appli

cation exist
4. Stated operational restrictions exist and require special attention
5. There are special constraints with respect to the distributed components

of the system

5. Transaction Rate—Similar to GSC 3, the number of transactions handled
by the application will be a performance consideration with respect to the
design, development, implementation, and maintenance of the system.

Degree of Influence

0. No peak transaction period is anticipated
1. A single peak transaction period (i.e., daily, weekly, monthly, etc.) is

anticipated
2. A peak transaction period will occur weekly
3. A peak transaction period will occur daily
4. Transaction rates are high enough that a performance analysis is

required during the design phase
5. Transaction rates are high enough to require performance analysis and,

in addition, the use of performance analysis tools during the design,
development, and/or implementation phases

6. Online Data Entry—The amount of data entered online will influence
the design development, implementation, and maintenance of the applica
tion. Note: these guidelines may not be realistic since they have not been
updated to reflect most systems today.

Degree of Influence

0. All transactions are processed in batch mode
1. 1—7 % of transactions are done interactively
2. 8-15% of transactions are done interactively
3. 16-23% of transactions are done interactively
4. 24-30% of transactions are done interactively
5. Over 30% of transactions are done interactively

7. End User Efficiency—The functions provided by the application may
emphasize user efficiency. This may include

Navigational aids
Menus
Online help/documentation

Automated cursor movement

HOW TO CONDUCT A FUNCTION POINT ANALYSIS 307

Scrolling Remote printing

Preassigned function keys

Submission of batch jobs from online transactions Cursor

selection of screen data Heavy use of reverse video,

highlighting, colors, etc. Hard copy user documentation of

online transactions Mouse interface Pop up windows

As few screens as possible to accomplish a business function

Bilingual support Multilingual support Degree of Influence

0. None

1. 1-3

2. 4-5

3. Six or more but with no specific user requirements in terms of efficiency

4. Six or more and stated user requirements are strong enough to require
design tasks for human factors to be included (e.g., minimize keystrokes)

5. Six or more and stated user requirements are strong enough to require
special tools and processes to demonstrate that requirements have been
achieved

8. Online Update—Related to the number of ILFs updated by the application.

Degree of Influence

0. None

1. Online update of one to three files, but volume of updating is low and
recovery is easy

2. Online update of four or more files, but volume is low and recovery is
easy

3. Online update of major internal files internal logical files (ILF)

4. In addition, protection from data loss is critical and must be specially
designed and built into the system

5. In addition, high volumes lead to high recovery cost considerations,
whereby recovery procedures must be automated and cause minimal
operator intervention

9. Complex Processing—Complex processing is a characteristic of the appli
cation and includes:

Sensitive control and/or application specific security processing

Extensive logical processing Extensive mathematical processing

A great deal of exception processing whereby incomplete transactions
that may be caused by such things as TP interruption, missing data val-
ues, or failed edits must be processed again

308 APPENDIX A / AN INTRODUCTION TO FUNCTION POINT ANALYSIS

* Complex processing to handle multiple input/output possibilities (e.g.,
multimedia or device dependence)

Degree of Influence

0. None
1. Any one
2. Any two
3. Any three
4. Any four
5. All five

10. Reusability—The degree to which the application will usable in other
applications.
Degree of Influence

0. There is no reusable code
1. Reusable code is used within the application
2. Less than 10% of the application considers more than one user's needs
3. 10% or more of the application considered more than one user's needs
4. The application was specially developed to ease reuse. The application

is customizable to the user at the source code level
5. The application was specifically designed to ease reuse. The applica

tion is customizable to use at source code level by means of user
parameter maintenance

11. Installation Ease—The ease or degree of difficulty during conversion and
installation.

Degree of Influence

0. No special considerations stated by the user. No special setup required
1. No special considerations stated by the user. However, special setup

required for installation
2. Conversion and installation requirements stated by the user. Conversion

and installation guides provided and tested, but impact of conversion is
not considered important

3. Conversion and installation requirements stated by the user. Conversion
and installation guides provided and tested, but impact of conversion is
considered important

4. In addition to 2., automated conversion and installation tools were pro
vided and tested

5. In addition to 3., automated conversion tools were provided and tested

12. Operational Ease—The efficiency and effectiveness of startup, backup,
and recovery procedures that were provided and tested during the system
testing phase.

Degree of Influence

0. No special considerations were stated by the user other than normal
backup procedures

HOW TO CONDUCT A FUNCTION POINT ANALYSIS 309

1-4. Select the following items that apply to the application. Each item has a
value of one unless noted otherwise:

Effective startup, backup, and recovery processes were provided, but
operator intervention is required.

Effective startup, backup, and recovery processes were provided, but
no operator intervention is required (count as 2 items).

The application minimizes the need for tape mounts. The

application minimizes the need for paper handling.

5. The application is designed for unattended operation—that is, no oper-
ator intervention is needed other than to start or shut down the applica-
tion. Automatic error recovery is a feature of the application.

13. Multiple Sites—The degree to which the application has been designed
specifically to be installed and operated at multiple sites and/or for multiple
organizations.

Degree of Influence

0. Only one user/installation site is required

1. Needs of multiple sites were considered and the application is designed
to operate only under identical hardware and software environments.

2. Needs of multiple sites were considered and the application is designed
to operate only under similar hardware and software environments.

3. Needs of multiple sites were considered and the application is designed
to operate only under different hardware and software environments.

4. Documentation and a support plan are provided and tested to support
the application at multiple sites as described in 1. or 2.

5. Documentation and a support plan are provided and tested to support
the application at multiple sites as described in 3.

14. Facilitate Change—The degree to which the application was developed to
facilitate change.

Degree of Influence

0. No special user requirements were stated to minimize or facilitate
change

1-5. Select the items that apply to the application:

Flexible query/report facility is provided to handle simple
requests—i.e., and/or logic is applied to only one ILF (count as 1)

Flexible query/report facility is provided that can handle requests of
average complexity—i.e., and/or logic applied to more than one ILF
(count as 2 items)

Flexible query/report facility is provide that can handle complex
requests—i.e., and/or logic combinations on one or more ILFs
(count as 3 items)

Control data is kept in tables and maintained by the user online.
Changes take effect next business day

« Control data kept in tables and maintained by the user online.
Changes take effect immediately (count as 2 items)

310 APPENDIX A / AN INTRODUCTION TO FUNCTION POINT ANALYSIS

Step 7: Calculate the Final Adjusted Function Point Count

BIBLIOGRAPHY

Albrecht, Allan J. 1979. Measuring Application Development
Productivity. Proceedings SHARE/GUIDE IBM Applications
Development Symposium, Monterey, Calif., Oct 14-17, 1979.

Albrecht, A. J. and J. E. Gaffney. 1983. Software Function, Source
Lines of Code and Development Effort Prediction: A Software
Science Validation. IEEE Transactions Software Engineering,
SE-9(6): 639-647.

Boehm, B. W. 1981. Software Engineering Economics. Englewood
Cliffs, N.J.: Prentice Hall.

Dekker, C. A. 1999. Managing (the size of) your projects: A project
management look at function points. Crosstalk: The Journal of
Defense Software Engineering, February: 24—26.

Dennis, A. and W. B. Haley. 2000. Systems Analysis and Design: An
Applied Approach. New York: John Wiley. Garmus, D. and D.

Herron. 1996. Measuring the Software Process.
Upper Saddle River, N.J.: Prentice Hall.

Jones, T. C. 1998. Estimating Software Costs. New York:
McGraw-Hill. Longstreet, David. Function Point Training and
Analysis Manual.

Longstreet Consulting Inc, Revision Dates: Feb. 2001, 30 Aug.
2001, 1 March 2002. <http://www.SoftwareMetrics.Com/free-
manual.htm>. McConnell, S. 1996. Rapid Development:

Taming Wild Software
Schedules. Redmond, Wash.: Microsoft Press.

